Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(16): 6170-6179, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38616610

RESUMO

Despite their many important physiological functions, past work on the diverse sequences of human milk oligosaccharides (HMOs) has been focused mainly on the highly abundant HMOs with a relatively low degree of polymerization (DP) due to the lack of efficient methods for separation/purification and high-sensitivity sequencing of large-sized HMOs with DP ≥ 10. Here we established an ultrahigh-temperature preparative HPLC based on a porous graphitized carbon column at up to 145 °C to overcome the anomeric α/ß splitting problem and developed further the negative-ion ESI-CID-MS/MS into multistage MSn using a combined product-ion scanning of singly charged molecular ion and doubly charged fragment ion of the branching Gal and adjacent GlcNAc residues. The separation and sequencing method allows efficient separation of a neutral fraction with DP ≥ 10 into 70 components, among which 17 isomeric difucosylated nona- and decasaccharides were further purified and sequenced. As a result, novel branched difucosyl heptaose and octaose backbones were unambiguously identified in addition to the conventional linear and branched octaose backbones. The novel structures of difucosylated DF-novo-heptaose, DF-novo-LNO I, and DF-novo-LNnO I were corroborated by NMR. The various fucose-containing Lewis epitopes identified on different backbones were confirmed by oligosaccharide microarray analysis.


Assuntos
Leite Humano , Oligossacarídeos , Espectrometria de Massas por Ionização por Electrospray , Humanos , Leite Humano/química , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Temperatura
2.
STAR Protoc ; 5(2): 102976, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38635398

RESUMO

Biological functions of glycans are intimately linked to fine details in branches and linkages, which make structural identification extremely challenging. Here, we present a protocol for automated N-glycan sequencing using multi-stage mass spectrometry (MSn). We describe steps for release/purification and derivation of glycans and procedures for MSn scanning. We then detail "glycan intelligent precursor selection" to computationally guide MSn experiments. The protocol can be used for both discrete individual glycans and isomeric glycan mixtures. For complete details on the use and execution of this protocol, please refer to Sun et al.,1 Huang et al.,2 and Huang et al.3.

3.
Carbohydr Polym ; 321: 121263, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739493

RESUMO

Human milk oligosaccharides (HMOs) are structurally diverse unconjugated glycans, and play crucial roles in protecting infants from infections. Preterm birth is one of the leading causes of neonatal mortality, and preterm infants are particularly vulnerable and are in need of improved outcomes from breast-feeding due to the presence of bioactive HMOs. However, studies on specific difference in HMOs as a function of gestation time have been very limited. We established an approach to extract and analyze HMOs based on 96-well plate extraction and mass spectrometry, and determined maternal phenotypes through distinctive fragments in product-ion spectra. We enrolled 85 women delivering at different gestation times (25-41 weeks), and observed different HMOs correlating with gestation time based on 233 samples from the 85 donors. With the increase of postpartum age, we observed a regular changing trajectory of HMOs in composition and relative abundance, and found significant differences in HMOs secreted at different postpartum times. Preterm delivery induced more variations between participants with different phenotypes compared with term delivery, and more HMOs varied with postpartum age in the population of secretors. The sialylation level in mature milk decreased for women delivering preterm while such decrease was not observed for women delivering on term.


Assuntos
Leite Humano , Nascimento Prematuro , Recém-Nascido , Lactente , Feminino , Humanos , Mães , Recém-Nascido Prematuro , Lactação , Oligossacarídeos
4.
Gut ; 72(11): 2149-2163, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549980

RESUMO

OBJECTIVE: Selecting interventions for patients with solitary hepatocellular carcinoma (HCC) remains a challenge. Despite gross classification being proposed as a potential prognostic predictor, its widespread use has been restricted due to inadequate studies with sufficient patient numbers and the lack of established mechanisms. We sought to investigate the prognostic impacts on patients with HCC of different gross subtypes and assess their corresponding molecular landscapes. DESIGN: A prospective cohort of 400 patients who underwent hepatic resection for solitary HCC was reviewed and analysed and gross classification was assessed. Multiomics analyses were performed on tumours and non-tumour tissues from 49 patients to investigate the mechanisms underlying gross classification. Inverse probability of treatment weight (IPTW) was used to control for confounding factors. RESULTS: Overall 3-year survival rates varied significantly among the four gross subtypes (type I: 91%, type II: 80%, type III: 74.6%, type IV: 38.8%). Type IV was found to be independently associated with poor prognosis in both the entire cohort and the IPTW cohort. The four gross subtypes exhibited three distinct transcriptional modules. Particularly, type IV tumours exhibited increased angiogenesis and immune score as well as decreased metabolic pathways, together with highest frequency of TP53 mutations. Patients with type IV HCC may benefit from adjuvant intra-arterial therapy other than the other three subtypes. Accordingly, a modified trichotomous margin morphological gross classification was established. CONCLUSION: Different gross types of HCC showed significantly different prognosis and molecular characteristics. Gross classification may aid in development of precise individualised diagnosis and treatment strategies for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estudos Prospectivos , Multiômica , Prognóstico
5.
Int Immunopharmacol ; 120: 110339, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210914

RESUMO

With the rising incidence of diabetes and its onset at a younger age, the impact on the male reproductive system has gradually gained attention. Exenatide is a glucagon-like peptide-1 receptor agonist effective in the treatment of diabetes. However, its role in diabetes-induced reproductive complications has rarely been reported. The study aimed to investigate the mechanism by which exenatide improved diabetic hypogonadism by regulating gut microbiota (GM) mediated inflammation. C57BL/6J mice were equally divided into normal control (NC), diabetic model control (DM) and exenatide-treated (Exe) groups. Testicular, pancreatic, colonic, and fecal samples were collected to assess microbiota, morphologic damage, and inflammation. Exenatide significantly reduced the fasting blood glucose (FBG) level in diabetic mice, increased the testosterone level, ameliorated the pathological morphological damage of islet, colon, and testes, and reduced the expression of pro-inflammatory factors, tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 in colon and testis. Furthermore, exenatide significantly reduced the abundance of some pathogenic bacteria, such as Streptococcaceae and Erysipelotrichaceae, and increased that of beneficial bacteria Akkermansia. Probiotics, such as Lactobacillus were negatively correlated with TNF-α, nuclear factor-kappa-B (NF-κB), IL-6, and FBG. Conditional pathogenic bacteria such as Escherichia/Shigella Streptococcus were positively correlated with TNF-α, NF-κB, IL-6, and FBG. The fecal bacteria transplantation experiment revealed that the abundance of pathogenic bacteria, Peptostreptococcaceae, significantly decreased from Exe group mice to pseudo-sterile diabetic mice, and the pathological damage to testes was also alleviated. These data suggested the protective effects of exenatide on male reproductive damage induced by diabetes by regulating GM.


Assuntos
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Hipogonadismo , Camundongos , Masculino , Animais , Exenatida/uso terapêutico , Exenatida/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , NF-kappa B , Camundongos Endogâmicos C57BL , Inflamação , Hipogonadismo/tratamento farmacológico
6.
Cell Rep ; 42(2): 112114, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790933

RESUMO

BK polyomavirus (BKPyV) is an opportunistic pathogen that uses the b-series gangliosides GD1b and GT1b as entry receptors. Here, we characterize the impact of naturally occurring VP1 mutations on ganglioside binding, VP1 protein structure, and virus tropism. Infectious entry of single mutants E73Q and E73A and the triple mutant A72V-E73Q-E82Q (VQQ) remains sialic acid dependent, and all three variants acquire binding to a-series gangliosides, including GD1a. However, the E73A and VQQ variants lose the ability to infect ganglioside-complemented cells, and this correlates with a clear shift of the BC2 loop in the crystal structures of E73A and VQQ. On the other hand, the K69N mutation in the K69N-E82Q variant leads to a steric clash that precludes sialic acid binding. Nevertheless, this mutant retains significant infectivity in 293TT cells, which is not dependent on heparan sulfate proteoglycans, implying that an unknown sialic acid-independent entry receptor for BKPyV exists.


Assuntos
Vírus BK , Polyomavirus , Vírus BK/genética , Vírus BK/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polyomavirus/genética , Polyomavirus/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Gangliosídeos/metabolismo
7.
Anal Chem ; 95(2): 811-819, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36547394

RESUMO

Accurate identification of glycan structures is highly desirable as they are intimately linked to their different functions. However, glycan samples generally exist as mixtures with multiple isomeric structures, making assignment of individual glycan components very challenging, even with the aid of multistage mass spectrometry (MSn). Here, we present an approach, GIPS-mix, for assignment of isomeric glycans within a mixture using an intelligent group-opting strategy. Our approach enumerates all possible combinations (groupings) of candidate glycans and opts in the best-matched glycan group(s) based on the similarity between the simulated spectra of each glycan group and the acquired experimental spectra of the mixture. In the case that a single group could not be elected, a tie break is performed by additional MSn scanning using intelligently selected precursors. With 11 standard mixtures and 6 human milk oligosaccharide fractions, we demonstrate the application of GIPS-mix in assignment of individual glycans in mixtures with high accuracy and efficiency.


Assuntos
Oligossacarídeos , Polissacarídeos , Humanos , Polissacarídeos/química , Oligossacarídeos/análise , Isomerismo , Leite Humano/química
8.
Biol Reprod ; 108(2): 292-303, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36401880

RESUMO

Successful attachment of conceptus to the uterine luminal epithelium (LE) is crucial for establishing a functional placenta in pigs. However, the underlying mechanisms are yet to be elucidated. The uterine LE-conceptus interface is enriched in various glycoconjugates essential to implantation. Using MALDI-MS profiling, we identified for the first time the O-glycan repertoire of pig endometrium during the conceptus attachment stage. The expression pattern of blood group A, O(H), Lewis x, y, a, b (Lex, Ley, Lea, and Leb), the sialylated and sulfated Lex antigens in the uterine LE-conceptus interface was assessed using immunofluorescence assays. Notably, the Lex-carrying O-glycans exhibited a temporal-spatial expression pattern. They were absent in the endometrium on estrous cycle days but strongly and spatially presented in the conceptus and uterine LE to which the conceptus apposes during the early conceptus attachment stage. In addition, Lex-carrying O-glycans were co-localized with secreted phosphoprotein 1 (SPP1), a well-characterized factor that plays a role in promoting conceptus attachment through interacting with integrin αVß3 and integrin αVß6. Meanwhile, the immunoprecipitation assays revealed an interaction between the Lex-carrying O-glycans and SPP1, integrin αV, and integrin ß6. Furthermore, we provided evidence that the ß1,4-galactosyltransferase 1 (B4GALT1) gene is a potential regulator for Lex antigen expression in the uterine LE-conceptus interface during the early conceptus attachment stage. In conclusion, our findings show that Lex-carrying O-glycans, presumably dependent on B4GALT1 gene expression, might modulate conceptus attachment by interacting with the SPP1-integrin receptor complex in pigs.


Assuntos
Implantação do Embrião , Útero , Gravidez , Feminino , Suínos , Animais , Útero/metabolismo , Placenta/metabolismo , Endométrio/metabolismo , Polissacarídeos/metabolismo
9.
Food Chem ; 397: 133750, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882165

RESUMO

Human milk oligosaccharides (HMOs) have attracted increasing attention due to the emerging evidence of their positive roles for infant's health. A high-throughput method for absolute quantitation of the complex HMOs including multiple isomeric structures is important but very challenging, due to the highly divers nature and wide variation in content of HMOs from different individuals. Here we used UPLC-MS-MRM in the negative-ion mode for accurate quantitation of 23 complex HMOs in just 15 min. The selected oligosaccharides are in their native forms and include neutral and sialylated, fucosylated and non-fucosylated, linear and branched, and secretor and Lewis phenotype indicators. The well validated method with good sensitivity, recovery and reproducibility was then applied to a large population quantitative survey of 251 Chinese mothers from five different ethnic groups (Han, Zhuang, Hui, Mongolian and Tibetan) living in different geographical regions for their secretor's status and Lewis phenotypes.


Assuntos
Antígenos de Grupos Sanguíneos , Leite Humano , Antígenos de Grupos Sanguíneos/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Lactente , Leite Humano/química , Oligossacarídeos/química , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
10.
Microbiol Spectr ; 9(3): e0182621, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817219

RESUMO

A multigene polysaccharide utilization locus (PUL) encoding enzymes and surface carbohydrate (glycan)-binding proteins (SGBPs) was recently identified in prominent members of Bacteroidetes in the human gut and characterized in Bacteroides ovatus. This PUL-encoded system specifically targets mixed-linkage ß1,3-1,4-glucans, a group of diet-derived carbohydrates that promote a healthy microbiota and have potential as prebiotics. The BoSGBPMLG-A protein encoded by the BACOVA_2743 gene is a SusD-like protein that plays a key role in the PUL's specificity and functionality. Here, we perform a detailed analysis of the molecular determinants underlying carbohydrate binding by BoSGBPMLG-A, combining carbohydrate microarray technology with quantitative affinity studies and a high-resolution X-ray crystallography structure of the complex of BoSGBPMLG-A with a ß1,3-1,4-nonasaccharide. We demonstrate its unique binding specificity toward ß1,3-1,4-gluco-oligosaccharides, with increasing binding affinities up to the octasaccharide and dependency on the number and position of ß1,3 linkages. The interaction is defined by a 41-Å-long extended binding site that accommodates the oligosaccharide in a mode distinct from that of previously described bacterial ß1,3-1,4-glucan-binding proteins. In addition to the shape complementarity mediated by CH-π interactions, a complex hydrogen bonding network complemented by a high number of key ordered water molecules establishes additional specific interactions with the oligosaccharide. These support the twisted conformation of the ß-glucan backbone imposed by the ß1,3 linkages and explain the dependency on the oligosaccharide chain length. We propose that the specificity of the PUL conferred by BoSGBPMLG-A to import long ß1,3-1,4-glucan oligosaccharides to the bacterial periplasm allows Bacteroidetes to outcompete bacteria that lack this PUL for utilization of ß1,3-1,4-glucans. IMPORTANCE With the knowledge of bacterial gene systems encoding proteins that target dietary carbohydrates as a source of nutrients and their importance for human health, major efforts are being made to understand carbohydrate recognition by various commensal bacteria. Here, we describe an integrative strategy that combines carbohydrate microarray technology with structural studies to further elucidate the molecular determinants of carbohydrate recognition by BoSGBPMLG-A, a key protein expressed at the surface of Bacteroides ovatus for utilization of mixed-linkage ß1,3-1,4-glucans. We have mapped at high resolution interactions that occur at the binding site of BoSGBPMLG-A and provide evidence for the role of key water-mediated interactions for fine specificity and affinity. Understanding at the molecular level how commensal bacteria, such as prominent members of Bacteroidetes, can differentially utilize dietary carbohydrates with potential prebiotic activities will shed light on possible ways to modulate the microbiome to promote human health.


Assuntos
Bacteroides/metabolismo , Proteínas de Transporte/metabolismo , Glucanos/metabolismo , Proteínas de Membrana/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/genética , Sítios de Ligação , Proteínas de Transporte/genética , Carboidratos da Dieta/metabolismo , Microbioma Gastrointestinal/genética , Humanos , Proteínas de Membrana/genética , Periplasma/metabolismo
11.
Int J Biol Macromol ; 193(Pt B): 1124-1129, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743814

RESUMO

Thrombotic complication has been an important symptom in critically ill patients with COVID-19. It has not been clear whether the virus spike (S) protein can directly induce blood coagulation in addition to inflammation. Heparan sulfate (HS)/heparin, a key factor in coagulation process, was found to bind SARS-CoV-2 S protein with high affinity. Herein, we found that the S protein can competitively inhibit the bindings of antithrombin and heparin cofactor II to heparin/HS, causing abnormal increase in thrombin activity. SARS-CoV-2 S protein at a similar concentration (~10 µg/mL) as the viral load in critically ill patients can cause directly blood coagulation and thrombosis in zebrafish model. Furthermore, exogenous heparin/HS can significantly reduce coagulation caused by S protein, pointing to a potential new direction to elucidate the etiology of the virus and provide fundamental support for anticoagulant therapy especially for the COVID-19 critically ill patients.


Assuntos
Coagulação Sanguínea , Heparitina Sulfato , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Trombose/metabolismo , Animais , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
iScience ; 24(11): 103272, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34661088

RESUMO

The densely glycosylated spike (S) protein highly exposed on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) surface mediates host cell entry by binding to the receptor angiotensin-converting enzyme 2 (ACE2). However, the role of glycosylation has not been fully understood. In this study, we investigated the effect of different N-glycosylation of S1 protein on its binding to ACE2. Using real-time surface plasmon resonance assay the negative effects were demonstrated by the considerable increase of binding affinities of de-N-glycosylated S1 proteins produced from three different expression systems including baculovirus-insect, Chinese hamster ovarian and two variants of human embryonic kidney 293 cells. Molecular dynamic simulations of the S1 protein-ACE2 receptor complex revealed the steric hindrance and Coulombic repulsion effects of different types of N-glycans on the S1 protein interaction with ACE2. The results should contribute to future pathological studies of SARS-CoV-2 and therapeutic development of Covid-19, particularly using recombinant S1 proteins as models.

14.
J Immunol ; 207(2): 534-541, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34193601

RESUMO

Complement activation is an important mediator of kidney injury in glomerulonephritis. Complement factor H (FH) and FH-related protein 5 (FHR-5) influence complement activation in C3 glomerulopathy and IgA nephropathy by differentially regulating glomerular complement. FH is a negative regulator of complement C3 activation. Conversely, FHR-5 in vitro promotes C3 activation either directly or by competing with FH for binding to complement C3b. The FH-C3b interaction is enhanced by surface glycosaminoglycans (GAGs) and the FH-GAG interaction is well-characterized. In contrast, the contributions of carbohydrates to the interaction of FHR-5 and C3b are unknown. Using plate-based and microarray technologies we demonstrate that FHR-5 interacts with sulfated GAGs and that this interaction is influenced by the pattern and degree of GAG sulfation. The FHR-5-GAG interaction that we identified has functional relevance as we could show that the ability of FHR-5 to prevent binding of FH to surface C3b is enhanced by surface kidney heparan sulfate. Our findings are important in understanding the molecular basis of the binding of FHR-5 to glomerular complement and the role of FHR-5 in complement-mediated glomerular disease.


Assuntos
Fator H do Complemento , Glomerulonefrite por IGA , Ativação do Complemento , Complemento C3b , Glicosaminoglicanos , Humanos
15.
Glycobiology ; 31(8): 931-946, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978739

RESUMO

Glycan microarrays have played important roles in detection and specificity assignment of glycan recognition by proteins. However, the size and diversity of glycan libraries in current microarray systems are small compared to estimated glycomes, and these may lead to missed detection or incomplete assignment. For microarray construction, covalent and noncovalent immobilization are the two types of methods used, but a direct comparison of results from the two platforms is required. Here we develop a chemical strategy to prepare lipid-linked probes from both naturally derived aldehyde-terminating and synthetic amino-terminating glycans that addresses the two aspects: expansion of sequence-defined glycan libraries and comparison of the two platforms. We demonstrate the specific recognition by plant and mammalian lectins, carbohydrate-binding modules and antibodies and the overall similarities from the two platforms. Our results provide new knowledge on unique glycan-binding specificities for the immune receptor Dectin-1 toward ß-glucans and the interaction of rotavirus P[19] adhesive protein with mucin O-glycan cores.


Assuntos
Polissacarídeos , beta-Glucanas , Animais , Lectinas , Mamíferos/metabolismo , Análise em Microsséries/métodos , Mucinas/metabolismo , Polissacarídeos/metabolismo
16.
Carbohydr Polym ; 259: 117734, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33673995

RESUMO

Oligosaccharides are one of the most important components in mammalian milk. Milk oligosaccharides can promote colonization of gut microbiota and protect newborns from infections. The diversity and structures of MOs differ among mammalian species. MOs in human and farm animals have been well-documented. However, the knowledge on MOs in rat and mouse have been very limited even though they are the most-widely used models for studies of human physiology and disease. Herein, we use a high-sensitivity online solid-phase extraction and HILIC coupled with electrospray tandem mass spectrometry to analyze the acidic MOs in rat and mouse. Among the fifteen MOs identified, twelve were reported for the first time in rat and mouse together with two novel sulphated oligosaccharides. The complete list of acidic oligosaccharides present in rat and mouse milk is the baseline information of these animals and should contribute to biological/biomedical studies using rats and mice as models.


Assuntos
Leite/metabolismo , Oligossacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray , Animais , Cromatografia Líquida de Alta Pressão , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Oligossacarídeos/isolamento & purificação , Ratos , Extração em Fase Sólida
17.
Glycobiology ; 31(1): 44-54, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-32501471

RESUMO

Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-ß. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-ß secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/genética , Técnicas de Cocultura , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Polissacarídeos/química , Ácidos Siálicos/química , Células Tumorais Cultivadas
18.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999033

RESUMO

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection.IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.


Assuntos
Vírus Chikungunya/fisiologia , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Ligação Viral , Animais , Artrite , Linhagem Celular , Febre de Chikungunya/virologia , Glucuronosiltransferase/genética , Heparitina Sulfato/metabolismo , Humanos , Polissacarídeos/metabolismo , Tropismo Viral
19.
Carbohydr Polym ; 237: 116122, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241449

RESUMO

Biological functions of N-glycans are frequently related to their unique branching patterns. Multistage mass spectrometry (MSn) has become the primary method for glycan structural analysis. However, selection of the best fragment as the precursor for the next round of product-ion scanning is important but difficult. We have previously proposed the concept and designed the approach of glycan intelligent precursor selection (GIPS) to guide MSn experiments, but its use in N-glycans is not straightforward as some N-glycans are of high similarity in branching patterns. In the present work we introduced new elements to GIPS to improve its performance in N-glycan branching pattern analysis. These include a hypothesis and significance test, based on Bayes factor, and DPbiased as a new precursor selection strategy. The improved GIPS was successfully applied to identification of individual N-glycans, and incorporated into MALDI-MS N-glycan profiling for assignment of N-glycans obtained from glycoproteins and complex human serum.


Assuntos
Glicoproteínas/química , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glicoproteínas/sangue , Humanos , Estrutura Molecular , Polissacarídeos/química , Polissacarídeos/classificação
20.
PLoS Pathog ; 16(1): e1007927, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999794

RESUMO

During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4-7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the ß-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface.


Assuntos
Parede Celular/imunologia , Fungos/imunologia , Lectinas Tipo C/imunologia , Mananas/imunologia , Micoses/imunologia , Filogenia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Parede Celular/química , Parede Celular/genética , Fungos/química , Fungos/classificação , Fungos/genética , Humanos , Lectinas Tipo C/genética , Mananas/análise , Micoses/genética , Micoses/microbiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...